A NOVEL SYNTHESIS OF LINEAR POLYENES VIA CONJUGATE ADDITION OF CUPRATES TO α , β - γ , δ - DIUNSATURATED SULFONES FOLLOWED BY SO $_2$ EXTRUSION

Ferdinand Naf*, René Decorzant, and Sina D Escher

Firmenich SA, Research Laboratories, 1211 Geneva 8, Switzerland

Summary - The two 1,3-butadienyl 2-propenyl sulfones $\underline{5}$ and $\underline{6}$, 1,3,5-heptatriene synthons, have been transformed into the tri- and tetraenes $\underline{1}$ - $\underline{4}$ by \overline{a} lkylcuprate addition and Ramberg-Backlund $\underline{50}$ 2 extrusion. The reaction stereochemistry is discussed

The undecatrienes $\underline{1}$ and $\underline{2}$, isolated from Galbanum¹, ², also occur, together with the undecatetraenes $\underline{3}$ and $\underline{4}$, in the seaweeds *Dictyopteris plagiogramma* and \underline{D} australis⁴ Isomer $\underline{4}$ has been identified as a gamete secretion in Spermatochnus paradoxus⁵, ⁶

The odors of the trienes $\underline{1}$ and $\underline{2}$ are highly appreciated in perfumery⁷, and this induced us to develop a new convergent synthesis of 1 - 4 from the common intermediate 5 (and/or 6)⁸

Reagents

- (i) t-BuOK/DMSO
- (ii) Allyl bromide/DMSO
- (iii) I₂/heptane
- (iva) Lithium dibutylcuprate/ether
- (ivb) Lithium(Z)-d1(1-butenyl)cuprate/ether
- (v) $CC1_A/KOH/t-BuOH/H_2O$

On treatment with strong bases sulfolane $\overline{7}$ undergoes chelotropic ring opening to $\underline{8}^{10,11}$ which can be alkylated at the sulfinate sulfur atom^{11,12,13} We thus prepared a mixture of (Z)-and (E)-1,3-butadienyl propenyl sulfone $\underline{5}$ and $\underline{6}$, hoping to elaborate these into the polyenes $\underline{1}$ - $\underline{4}$ by a sequence of conjugate alkyl/alkenyl metal addition to the dienyl sulfone site¹⁴ and Ramberg-Backlund sulfur dioxide extrusion^{15,16} Although the alkylation step was expected to give only $\underline{5}$ rapid isomerization into $\underline{6}$ occurs under the reaction conditions, in our opinion via a radical process Pure $\underline{5}$ was stable towards bases such as LDA, potassium t-butoxide and sodium methylate in THF, DMF, DMSO at temperatures from -78° to +50°, but was completely converted into $\underline{6}$ by $\underline{1}_2$ in heptane (2 h/90^0)¹³

Nothing about dialkylcuprate addition to $\alpha,\beta-\gamma,\delta$ -diunsaturated sulfones was known at the outset of this work. To our surprise, only (Z)-2-octenyl tosyl sulfone 9 was isolated when lithium

(1) Lithium dibutylcuprate/ether

dibutylcuprate¹⁸ reacted with (E)-1,3-butadienyl tosyl sulfone (cf¹⁹) The butyl group was thus selectively added to the δ -position (1,6-addition) and the newly formed 2,3-double bond has exclusively (Z)-geometry²⁰ Lower (Z)-selectivity was obtained on reaction of substrate $\underline{6}$ (containing 5% $\underline{5}$) and $\underline{5}$ (containing 12% $\underline{6}$) with lithium dibutylcuprate or lithium (Z)-di(l-butenyl) cuprate²¹ (cf Table, entries 2, 3, and 4)

				a)
Organocuprate	addition	10	α , β - γ , δ -dıunsaturated	sulfones"

Entry	Sulfones (ratio)	Cuprate	Products (% of mixture)	Yıeld (ısolated)
1	10	Bu ₂ CuLı	<u>9</u> (100%) + <u>11</u>	(0%) ^{b)} 21%
2	$5 + 6 (88:12)^{b}$	Bu ₂ CuLı	<u>13</u> (65%) + <u>14</u>	(35%) ^{C)} 60%
3	$5 + 6 (5:95)^{b}$	Bu ₂ CuLı	<u>13</u> (79%) + <u>14</u>	(21%) ^{C)} 46%
4	$5 + 6 (21:79)^{b}$	^_ ∕) ₂ CuLı	<u>15</u> (71%) + <u>16</u>	(29%) 1.5%

Conditions addition of sulfone to cuprate in ether at -40° , stirring at -40° (1 h) and 0° (2 h), decomposition at 0° by aq $\mathrm{NH_4Cl}$

b) Determined by GC and ¹H NMR

c) Determined by HPLC and 1H NMR

d) Determined by 1H NMR

The (Z)-geometry of the butenyl group was fully retained during the cuprate addition (cf other examples 14,21) Owing to polymerization of $\underline{5}$ and $\underline{6}$, the yields of the addition reactions are moderate to low (reaction temperature $+25^{0}$ to -78^{0}) The structures are in agreement with their 1 H NMR-data

When a mixture of $\underline{13}$ and $\underline{14}$ (79 21) was subjected to mild Ramberg-Backlund conditions (CCl $_4$ /KOH/t-butanol/25 0 2) an undecatriene mixture (42% yield) of $\underline{2}$ (81%), $\underline{17}$ (14%), $\underline{1}$ (2%) and $\underline{18}$ (3%) was isolated 2 3 As expected, the double bonds already present in $\underline{13}$ and $\underline{14}$ preserved their configurations and the newly formed double bond in the Ramberg-Backlund step was mainly the (\mathcal{E})-configuration Analogously, the mixture $\underline{15}$ + $\underline{16}$ (71 29) was transformed into an undecatetraene mixture (48% yield) containing $\underline{3}$ (14 5%), $\underline{4}$ (77 5%) and $\underline{19}$ (8%) 24

References and Notes

- 1 Y Chrétien-Bessière, J. Garnero, L. Benezet and L. Peyron, <u>Bull. Soc Chim Fr</u> 1967, 97, P. Teisseire, B. Corbier and M. Plattier, <u>Recherches</u> (Paris) 16, 5 (1967), Y.-R. Naves, <u>Bull. Soc Chim. Fr</u>. 1967, 3152
- 2 For the configurational assignment of $\underline{1}$ and $\underline{2}$ see 3
- 3 F Naf, R Decorzant, W Thommen, B Willhalm and G Ohloff, Helv Chim Acta 58, 1016 (1975)
- 4 J.A Pettus, Jr and R.E Moore, <u>J Am. Chem Soc</u> *93*, 3087 (1971), R E Moore, J Mistysyn and J A Pettus, Jr., <u>Chem Commun</u> *1972*, 326, R E Moore, J A Pettus, Jr and J Mistysyn, <u>J Org Chem</u> *39*, 2201 (1974), R E Moore, Acc Chem Res *10*, 40 (1977)
- 5 D G Muller, F -J. Marnex, W. Boland, L Jaenike and G Gassmann, Naturwissenschaften 68, 478 (1981)
- 6 F-J Marner, W Boland and L Jaenike, Liebigs Ann Chem. 1982, 579
- 7. S Arctander, "Perfume and Flavor Chemicals", Montclair N J , 1969, compound number 3032
- 8. For earlier syntheses of $\underline{1}$ and $\underline{2}$ see 3 , 9 , and for the first synthesis of $\underline{3}$ and $\underline{4}$ see 6
- 9 M Schneider et al., Gesamthochschule Wuppertal (West Germany), personal communication 1980
- 10 H Kloosterziel, J A A van Drunen and P Galama, Chem Commun 1969, 885
- 11. R.L Crumbie and D D Ridley, Aust J Chem 34, 1017 (1981)
- 12 P Chabardes, M Julia and A. Ment, Ger Offen 2 319 518 (1973), Chem Abstr 80, 27403 x (1974)
- 13. J J Burger, T B R A Chen, E R de Waard and O. Huisman, Tetrahedron 36, 723 (1980)

- For alkyl and alkenyl cuprate addition to α , β -unsaturated sulfones, see G H. Posner and D J Brunelle, <u>J Org Chem</u> 38, 2747 (1973), G de Chirico, V Fiandanese, G. Marchese, F Naso and O Sciacovelli, <u>Chem Commun</u> 1981, 523
- 15 L A. Paquette, Organic Reactions 25, 1 (1977)
- 16 See also "Michael addition and Ramberg-Backlund rearrangement in one pot" 17
- T B R A Chen, J J Burger and E R de Waard, <u>Tetrahedron Lett.</u> 1977, 4527, J J Burger, T B.R A Chen, E R de Waard and O Huisman, Tetrahedron 37, 417 (1981)
- 18 G M Whitesides, J S SanFilippo, Jr , C P Casey and E J Panek, <u>J Am Chem Soc</u> 89, 5302 (1967)
- 19 W E Truce, Ch T. Goralski, L W Christensens and R H Bavry, <u>J Org Chem</u> 35, 4217 (1970)
- 20 A mixture of $\underline{9}$ and $\underline{12}$ (17 83) was obtained from $\underline{11}$ For method see M Julia and D Uguen, Bull Soc Chim Fr 1976, 513

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

- 21 F Naf and P Degen, Helv Chim Acta 54, 1939 (1971)
- 22 C Y Meyers, A M Malte and W S Mathews, J Am Chem Soc 91, 7510 (1969)
- 23 Trienes $\underline{1}$, $\underline{2}$, $\underline{17}$ and $\underline{18}$ were identical in all respects (GC, 1 H NMR, MS, UV, IR) with the corresponding samples prepared earlier 3 .
- Tetraenes $\underline{3}$ and $\underline{4}$ were identical in all respects with the corresponding samples prepared by Wittig condensation of phosphorane $\underline{20}^{25}$ with (E)-2,4-pentadienal $(\underline{21})^{26}$ (inverse addition)

- 25 B Maurer and A Hauser, Helv. Chim Acta 65, 462 (1982)
- 26 R Grewe and W von Bonin, Chem Ber 94, 234 (1961)

(Received in France 3 September 1982)